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IMPOSING ‘NO’ BOUNDARY CONDITION AT OUTFLOW:
WHY DOES IT WORK?
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SUMMARY

In recent work on outflow boundary conditions for Navier–Stokes equations by Papanastasiouet al. (Int. j.
numer. methods fluids, 14, 587–608 (1992)) a choice has been proposed which can formally be described as
imposing no boundary condition at all. This of course leads to an underdetermined problem at the level of the
partial differential equations. However, it yields a well-defined problem at the discrete level and it has been
documented that this choice of outflow conditions performs in a way which is superior to more ‘standard’
artificial boundary conditions. In this paper we analyse a one-dimensional model problem. We shall show that
the ‘free’ boundary condition of Papanastasiouet al. actually imposes an effective boundary condition. This
effective boundary condition is identified and its advantages are discussed.
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1. INTRODUCTION

Numerical solutions of flow problems frequently lead to the need to impose artificial boundary
conditions at ‘open’ boundaries which are introduced by truncation of the flow domain. The choice of
such boundary conditions poses a major problem. Recently, a ‘free’ boundary condition was proposed
by Papanastasiouet al.1 Interestingly, this condition can formally be described as imposing no
boundary condition at all!

We now describe how the free boundary condition is introduced. In the finite element method the
solution is approximated by a linear combination of selected shape functions and the differential
equation is approximated by setting its integral against each shape function equal to zero. These
discretized equations are then integrated by parts. For shape functions supported in the interior, this
integration by parts is straightforward, but for shape functions associated with boundary nodes, there
are boundary integrals arising from the integration by parts. These boundary integrals are dealt with
in one of two ways. If the boundary condition is essential, the equation associated with the boundary
node is dropped and replaced by the prescribed boundary condition. If the boundary condition is
natural, then the boundary integral from the integration by parts is prescribed. The suggestion in
Reference 1 for the open boundary is simply not to do the integration by parts at all for those
equations associated with nodes on the outflow boundary. Formally, this appears to impose no
boundary condition if the order of the shape functions is at least equal to that of the differential
equation. Otherwise, a boundary condition is imposed which is obtained simply by setting the
highest-order derivatives equal to zero.2
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At the level of the partial differential equation it is of course impossible to simply drop a boundary
condition. However, the discrete problem in Reference 1 yields perfectly well-defined solutions
which appear to be better than those obtained with more ‘classical’ choices of boundary conditions.
This makes it of interest to understand what the effect of the free boundary condition is. Indeed,
Papanastasiouet al.1 observe that in the Stokes limit the free boundary condition appears to be
equivalent to natural, stress-free conditions. This suggests that actually the free condition may mask a
hidden ‘effective’ boundary condition.

In this paper we shall study a one-dimensional model problem where we demonstrate that this is
indeed the case. The equation is

ut � Euxx ÿ cux ÿ bu � f ; �1�

posed forx 2 �0;L� and t > 0, where f �x; t� is a given function andE; c and b are non-negative
constants. For simplicity we consider a Dirichlet condition at the left endpoint:

u�0; t� � 0: �2�

The right endpoint is treated as an ‘open’ boundary. The same kind of model problem is also
discussed in Reference 2. It is pointed out there that if piecewise linear elements are used for
discretization, then the free boundary condition is equivalent tout � ÿcux ÿ bu � f , i.e. it is obtained
from the differential equation by setting the second derivative equal to zero. However, no boundary
condition was identified for quadratic elements, it was pointed out, however, that the caseb � c � 0
leads to an ill-posed problem and it was conjectured that other cases might lead to an implicit
boundary condition (called the ‘fuzzy’ boundary condition in Reference 2). In this paper we consider
discretization by quadratic three-node elements.3,4 We shall show that the ‘free’ boundary condition
of Reference 1 is effectively equivalent to imposing the boundary condition

c�ut � cux � bu ÿ f � � E�ÿuxt ÿ bux � fx�: �3�

This condition is obtained by differentiating (1), settinguxxx to zero and substitutinguxx from (1). We
note that (3) will not work if we consider the time-independent problem withb � c � 0; indeed, in
this case the free boundary condition cannot work, since every linear function satisfies the equation
even at the discrete level (see the remarks at the end of Section 6 in Reference 1).

The procedure of settinguxxx � 0 can be viewed as a special case of ‘extrapolation’ conditions. In
the present case the conditionuxxx � 0 is not introduced explicitly but is hidden in the discrete
formulation. There are a number of results in the literature where boundary conditions for sufficiently
high-order derivatives of the solution are discussed. We refer e.g. to Reference 5, where the boundary
conditionDu � 0 is used for an advection–diffusion equation and error estimates for high Peclet
number are derived. In Reference 6, outflow boundary conditions for the Navier–Stokes equations are
considered which consist of setting higher-order derivatives of the velocities equal to zero. It is
demonstrated that such a procedure is effective in suppressing high-Reynolds-number boundary
layers. In addition, the stability of various combinations of inflow and outflow conditions is
discussed. In Reference 7, error estimates (for the error resulting from erroneous boundary data) are
given for extrapolation outflow conditions. Since the ‘free’ boundary condition is effectively
equivalent to an extrapolation condition, it offers the same advantages which have been documented
for these conditions, such as the absence of boundary layers. We shall discuss this point in the
concluding section.

414 M. RENARDY



2. DISCRETIZATION BY PIECEWISE QUADRATIC ELEMENTS

We shall be concerned only with spatial discretization of (1) and continue to consider time as a
continuous variable. The discretization will be by three-node piecewise quadratic elements; see e.g.
Reference 3 or 4. We divide the interval [0,L] into N subintervals of lengthL=N� h; let xi � iL=N .
Associated with each nodexi, we have the basis functionfi�x� � f�x ÿ xi�, where

f�x� �
1 � 3x=h � 2�x=h�2 if ÿ h4 x4 0;
1 ÿ 3x=h � 2�x=h�2 if 04 x4 h;
0 if jxj5 h:

8
<

:
�4�

For i � 0 andN we simply ignore the part offi which is outside the interval [0,L]. Moreover, for
each interval we have the internal nodexi�1=2 � �xi � xi�1�=2 and the associated basis function
fi�1=2�x� � c�x ÿ xi�, where

c�x� � x=h ÿ �x=h�2 if 04 x4 h;
0 otherwise:

�

�5�

Equation (1) with boundary condition (2) is then discretized by setting

u �
P2N

i�1
aifi=2�x� �6�

and requiring that

�L

0
�ut ÿ Euxx � cux � bu ÿ f �fi dx � 0 �7�

for i � 1
2 ; 1; . . . l;N . Hereuxx needs to be interpreted in the sense of distributions, sinceux may have

jumps at element boundaries. For alli other thanN we can integrate by parts to find

�L

0
��ut � cux � bu ÿ f �fi � Euxf

0

i�dx � 0: �8�

However, fori � N this results in a boundary term, sincefN �L� 6� 0 :

�L

0
��ut � cux � bu ÿ f �fN � Euxf

0

N �dx ÿ Eux�L; t�fN �L� � 0: �9�

The ‘free’ boundary condition of Reference 1 consists in simply evaluatingux�L; t� from (6) without
imposing any additional conditions. This is of course equivalent to simply keeping the equation in the
form (7).

We now focus on (7) for the last two values ofi, i.e. i � N ÿ

1
2 andio � N . For those values we get

�h

0
�ut�L ÿ x; t� ÿ Euxx�L ÿ x; t� � cux�L ÿ x; t� � bu�L ÿ x; t� ÿ f �L ÿ x; t���1 ÿ 3x=h � 2�x=h�2�dx;

�h

0
�ut�L ÿ x; t� ÿ Euxx�L ÿ x; t� � cux�L ÿ x; t� � bu�L ÿ x; t� ÿ f �L ÿ x; t���x=h ÿ �x=h�2�dx: �10�
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We note that since the integrations extend only over a single element, we can interpret all derivatives
here in the classical sense. We subtract the two equations from each other:
�h

0
�ut�L ÿ x; t� ÿ Euxx�L ÿ x; t� � cux�L ÿ x; t� � bu�L ÿ x; t� ÿ f �L ÿ x; t���1 ÿ 4x=h � 3�x=h�2�dx:

�11�

We now integrate by parts, but we shift derivatives ontou rather than away from it. This yields
�h

0
�uxt�L ÿ x; t� ÿ Euxxx�L ÿ x; t� � cuxx�L ÿ x; t� � bux�L ÿ x; t� ÿ fx�L ÿ x; t��

� �x=h ÿ 2�x=h�2 � �x=h�3�dx � 0: �12�

We now note thatu is a quadratic function on the interval�L ÿ h;L� and henceuxxx � 0. Moreover,
the weight function

x=h ÿ 2�x=h�2 � �x=h�3 �13�

is positive forx 2 �0; h�. Hence (12) says that a weighted average of

uxt � cuxx � bux ÿ fx �14�

vanishes in the last element. We can therefore claim that the ‘free’ boundary condition is equivalent
to the effective boundary condition

uxt � cuxx � bux ÿ fx � 0: �15�

We can now use equation (1) to replaceuxx in (15). This leads to (3).

3. DISCUSSION OF THE EFFECTIVE BOUNDARY CONDITION

We start by discussing some limiting cases. First let us consider the case wherec � 0 and f � 0. In
that case, (3) takes the form

uxt � ÿbux: �16�

That is, we have the natural boundary conditionux � 0 in the time-independent case, while in the
time-dependent case we converge to the natural boundary condition ast !1. We note that the
equationut � euxx ÿ bu can be viewed as a prototype for the two-dimensional problem

ut � E�uxx � uyy� �17�

if we can separate variables and use normal modes in they-direction. We note that Papanastasiouet
al.1 indeed appear to find a natural boundary condition in the case of the Stokes problem.

Next we consider the case of high Peclet number andE! 0. If we actually setE � 0, then (3)
simply coincides with the differential equation itself. Moreover, the right-hand side of (3) represents
the right first-order correction. Ife is small, then we can differentiate (1) and, to within an error of
order e, we have

uxt � ÿcuxx ÿ bux � fx: �18�

If we solve this foruxx and substitute into (1), we obtain precisely (3). Hence solutions of (1) which
have no boundary layer atx � L should satisfy (3) to within an error of orderE2. This makes (3) a
natural candidate for a boundary condition to be imposed if boundary layers are to be avoided.
Indeed, the absence of boundary layers at high Reynolds number is one of the most striking successes
reported in Reference 1.
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Finally let us consider (1) on the semi-infinite interval (0,?) and let us assume thatf and u
approach some asymptotic limit asx !1. Clearly, the preferred conditions to be imposed atx � L
would be those which are consistent with this asymptotic limit. Ifu approaches a limit at largex, we
should haveut � bu ÿ f ; ux anduxx approximately equal to zero at largex, which is consistent with
(3). Moreover, if the approach to the asymptotic limit is slow, thenux will dominate overuxx for large
x and we are back to the high-Peclet-number limit which we have already discussed. Hence the
boundary condition (3) does, under these conditions, reflect the asymptotic behaviour of the true
solution on the semi-infinite interval. We note that this does not apply if the solution asymptotes to a
periodic rather than a constant state at infinity. Hence the method should do less well in these cases.
We note that in Reference 1 the asymptotic state was always ‘fully developed’ flow.
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